Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.114
Filtrar
1.
Nanoscale Horiz ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656282

RESUMO

Correction for 'Pickering emulsion templated proteinaceous microparticles as glutathione-responsive carriers for endocytosis in tumor cells' by Weijie Jiang et al., Nanoscale Horiz., 2024, 9, 536-543, https://doi.org/10.1039/D3NH00551H.

2.
Heliyon ; 10(7): e28601, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560139

RESUMO

In the era of information technology advancement, big data analysis has emerged as a crucial tool for government governance. Despite this, corruption remains a challenge at the grass-roots level, primarily attributed to information asymmetry. To enhance the efficacy of corruption prevention and control in grass-roots government, this study introduces the concept of data platform management and integrates it with the "5W" (Who, What, When, Where, Why) analysis framework. The research is motivated by the observation that existing studies on corruption prevention primarily concentrate on the formulation of laws and regulations, neglecting the potential improvement in actual effectiveness through the utilization of data platforms and analytical frameworks. The research employs methodologies grounded in the Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis framework, the Plan, Do, Check, Act (PDCA) cycle analysis framework, and the 5W analysis framework. Throughout the iterative process of implementing data platform management, various timeframes are established, and the impact of the three models is evaluated using indicators such as public participation and government satisfaction. The research reveals that the SWOT framework can formulate targeted strategies, the PDCA framework continuously optimizes work processes, and the 5W framework profoundly explores the root causes of corruption. The outcomes indicate a 10.76% increase in the public participation level score with the 5W model, rising from 71.67%, and a 23.24% increase in the governance efficiency score, reaching 66.12%. The SWOT model excels in case handling prescription and corruption reporting rate. The synergistic application of the three models demonstrates a positive impact. In conclusion, the amalgamation of data platform management and a multi-model approach effectively enhances the corruption prevention capabilities of grass-roots governments, offering insights for the establishment of transparent and efficient grass-roots governance.

4.
Nanoscale ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651538

RESUMO

Scandium oxide (Sc2O3) has a wide range of applications in metallurgy, chemical industry, electronics and many other high-tech fields. However, most Sc2O3 materials exist in the powder or bulk form, while nanostructured Sc2O3 has rarely been reported as there is a lack of a common method to control its dimensionality, hindering the understanding of new properties and potential applications of nano-Sc2O3 materials. In this paper, we establish a procedure to synthesize a two-dimensional (2D) Sc2O3-covalent organic framework (COF) composite film where the crystal size of Sc2O3 domains is as small as ∼3 nm. The composite film is prepared by a Schiff base condensation reaction at the sharp n-pentane/water interface using a combination of surfactant-monolayer-assisted interfacial synthesis and laminar assembly polymerization methods. Then the conditions of nucleation and uniform film formation of the 2D Sc2O3/COF are explored further. Meanwhile, an atomic force microscopy indentation test shows that the material has a high Young's modulus of 89.1 ± 3.8 GPa, which is much higher than those of the majority of reported 2D polymer materials. We further extended this synthesis method to the preparation of Yb2O3 (ytterbium oxide) and/or Er2O3 (erbium oxide)-incorporated 2D COF composite films, verifying the universality of this strategy. This work provides an opportunity to vary the dimensionality of many kinds of metal oxides and explore the potential applications of low-dimensional Sc2O3 materials.

5.
Phys Chem Chem Phys ; 26(16): 12564-12572, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38595124

RESUMO

The ß-Ga2O3 crystal is a significant ultrawide bandgap semiconductor with great potential in ultraviolet optoelectronics and high-power devices. Planar defects in ß-Ga2O3 have been observed in experiments, but their structures, influences, formation mechanism, and controlling methods remain to be studied. We conducted a comprehensive study of ß-Ga2O3 planar defects using density functional theory. We determined the atomic structures of planar defects (stacking faults and twins) on (100), (001), and (-201) planes in ß-Ga2O3 crystals and calculated the formation energy and band structure of each defect. Our results indicate that the formation energy of stacking faults on the (100) plane and twins on the (100) and (-201) planes was extremely low, which explained why these planar defects were observed readily. We also studied the influence of common impurities (Si, Sn, Al, H) and vacancies in ß-Ga2O3 crystals on the formation of these planar defects. Our findings revealed that specific impurities and vacancies could facilitate the formation of planar defects or even make them spontaneous. This research provides critical insights into the atomic structures of planar defects in ß-Ga2O3, and explains why they form readily from the perspective of formation energy. These insights are important for future research into ß-Ga2O3 defects.

6.
J Exp Clin Cancer Res ; 43(1): 106, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589927

RESUMO

INTRODUCTION: Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. Recently, targeted therapies including PD1 (programmed cell death 1) antibodies have been used in advanced GC patients. However, identifying new biomarker for immunotherapy is still urgently needed. The objective of this study is to unveil the immune evasion mechanism of GC cells and identify new biomarkers for immune checkpoint blockade therapy in patients with GC. METHODS: Coimmunoprecipitation and meRIP were performed to investigate the mechanism of immune evasion of GC cells. Cocuture system was established to evaluate the cytotoxicity of cocultured CD8+ T cells. The clinical significance of HSPA4 upregulation was analyzed by multiplex fluorescent immunohistochemistry staining in GC tumor tissues. RESULTS: Histone acetylation causes HSPA4 upregulation in GC tumor tissues. HSPA4 upregulation increases the protein stability of m6A demethylase ALKBH5. ALKBH5 decreases CD58 in GC cells through m6A methylation regulation. The cytotoxicity of CD8+ T cells are impaired and PD1/PDL1 axis is activated when CD8+ T cells are cocultured with HSPA4 overexpressed GC cells. HSPA4 upregulation is associated with worse 5-year overall survival of GC patients receiving only surgery. It is an independent prognosis factor for worse survival of GC patients. In GC patients receiving the combined chemotherapy with anti-PD1 immunotherapy, HSPA4 upregulation is observed in responders compared with non-responders. CONCLUSION: HSPA4 upregulation causes the decrease of CD58 in GC cells via HSPA4/ALKBH5/CD58 axis, followed by PD1/PDL1 activation and impairment of CD8+ T cell's cytotoxicity, finally induces immune evasion of GC cells. HSPA4 upregulation is associated with worse overall survival of GC patients with only surgery. Meanwhile, HSPA4 upregulation predicts for better response in GC patients receiving the combined immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Gástricas , Humanos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Regulação para Cima , Evasão da Resposta Imune , Quimioterapia Combinada , Proteínas de Choque Térmico HSP110/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo
7.
Int J Mol Med ; 53(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666527

RESUMO

Following the publication of the above article, an interested reader drew to the attention of the Editorial Office that, in Fig. 3A on p. 530, two pairs of data panels were overlapping, such that certain of the panels appeared to have been derived from the same original sources where the results from differently performed experiments were intended to have been portrayed. The authors have examined their original data, and realize that errors associated with data handling/labelling during the preparation of the representative images in Fig. 3A had occurred. The revised version of Fig. 3, showing the correct data for the 'NC/ACHN/Invasion and Migration' data panels, the 'Inhibitor NC/786­O' panel and the 'Inhibitor NC/ACHN/Invasion' panel, is shown on the next page. The authors can confirm that the errors associated with this figure did not have any significant impact on either the results or the conclusions reported in this study, and all the authors agree with the publication of this Corrigendum. The authors are grateful to the Editor of International Journal of Molecular Medicine for giving them the opportunity to publish this Corrigendum; furthermore, they apologize to the readership of the Journal for any inconvenience caused. [International Journal of Molecular Medicine 43: 525­534, 2019; DOI: 10.3892/ijmm.2018.3931].

8.
Huan Jing Ke Xue ; 45(2): 732-743, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471913

RESUMO

The launch of the national carbon emissions trading market in China is a policy to carry out the Beautiful China initiative and to establish a low-carbon economic development system that promotes carbon emission and waste reduction. In order to detect the carbon metabolic processes of the pilot and nonpilot municipalities or provinces in the northern region of China, the theory of urban carbon metabolism and the methods of input-output analysis and ecological network analysis were introduced and used. The results showed that the direct carbon emissions of Beijing and Tianjin had decreased, but their embodied carbon emissions had increased since 2012. The direct and embodied carbon emissions of the pilot sectors in Beijing and Tianjin had the same trend; specifically, the emissions of the sectors of mining and washing of coal, extraction of petroleum and natural gas, and manufacture of non-metallic mineral products decreased significantly, but the sectors of production and supply of electric power and steam with high carbon emission increased. The same trend of the embodied carbon emission intensities of sectors with that of their embodied carbon emissions verified that the embodied added values were not growing with the promotion of the carbon emission trading market. Subsequently, the embodied carbon emission of the pilot sectors in all the municipalities and provinces of the northern region were all contributed mainly by the emissions embodied by a path length less than 6; therefore, it showed that more attention should be paid to the trade among sectors with a path length less than 6 and reducing their carbon emissions. Furthermore, from 2007 to 2012, products or service trading among sectors mostly concentrated on sectors within one municipality or province, and these products or services had the characteristics of low carbon emission. Since 2012, the integration development of the Beijing-Tianjin-Hebei urban agglomeration and the new regional economic patterns established in the northern region both promoted the trading across provinces and across sectors. This research is based on the background of the carbon emission trading policy and aims to build a methodology to identify the key actors and paths in a metabolic system. This could provide a scientific basis for regional policy implementation and regional long-term sustainable development.

9.
Exp Ther Med ; 27(4): 155, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476890

RESUMO

[This corrects the article DOI: 10.3892/etm.2018.5881.].

10.
Adv Healthc Mater ; : e2303529, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430010

RESUMO

Implant-associated osteomyelitis (IAOM) is characterized by bone infection and destruction; current therapy of antibiotic treatment and surgical debridement often results in drug resistance and bone defect. It is challenging to develop an antibiotic-free bactericidal and osteogenic-enhanced strategy for IAOM. Herein, an IAOM-tailored antibacterial and osteoinductive composite of copper (Cu)-strontium (Sr) peroxide nanoparticles (CSp NPs), encapsulated in polyethylene glycol diacrylate (PEGDA) (CSp@PEGDA), is designed. The dual functional CSp NPs display hydrogen peroxide (H2 O2 ) self-supplying and Fenton catalytic Cu2+ ions' release, generating plenty of hydroxyl radical (• OH) in a pH-responsive manner for bacterial killing, while the released Sr2+ promotes the in vitro osteogenicity regarding cell proliferation, alkaline phosphatase activity, extracellular matrix calcification, and osteo-associated genes expression. The integration of Cu2+ and Sr2+ in CSp NPs together with the coated PEGDA hydrogel ensures the stable and sustainable ion release during short- and long-term periods. Benefitted from the injectablity and photo-crosslink ability, CSp@PEGDA is able to thoroughly fill the infectious site and gelate in situ for bacterial elimination and bone regeneration, which is verified through in vivo evaluation using a clinical-simulating IAOM mouse model. These favorable abilities of CSp@PEGDA precisely meet the multiple therapeutic needs and pave a promising way for implant-associated osteomyelitis treatment.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38551437

RESUMO

Objective: To investigate the effect of the intervention program based on the Interaction Model of Client Health Behavior (IMCHB) in patients with pressure injury (PI). Methods: The First Affiliated Hospital of Qiqihar Medical University received thirty patients suspected of having pressure injuries from June to December 2022. These patients were selected as the control group. Another thirty patients suspected of having pressure injuries were received by the hospital from January to June 2023 and were selected as the experimental group. The experimental group received a usual care protocol, while the trial group received the IMCHB model intervention for three months. The study compared the knowledge of pressure injuries, quality of life, incidence of pressure injuries, and patient satisfaction of high-risk patients between the two groups. Results: After the intervention, the PI awareness score of caregivers in the experimental group was (31.90 ± 5.24). It is higher than the control group (26.37 ± 6.85). The point of social function, physical function and material function of experimental group were (57.03 ± 5.32), (33.47 ± 3.52) and (58.53 ± 6.93). Respectively, it was higher than the experimental group (48.63 ± 4.80), (27.17 ± 3.04), (46.13 ± 6.72). The incidence of high-risk PI in the experimental group was 3.33%. The point of the control group was 26.67%. The total satisfaction of the experimental group was (8.27 ± 0.78) points, higher than the control group (7.30 ± 0.65). The difference was of statistical significance (P < .05). Conclusion: The intervention program based on IMCHB can significantly improve cognitive ability and thus promote health behavior.

12.
Angew Chem Int Ed Engl ; : e202402255, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551062

RESUMO

With the prosperity of the development of carbon nanorings, certain topologically or functionally unique units-embedded carbon nanorings have sprung up in the past decade. Herein, we report the facile and efficient synthesis of three cyclooctatetraene-embedded carbon nanorings (COTCNRs) that contain three (COTCNR1 and COTCNR2) and four (COTCNR3) COT units in a one-pot Yamamoto coupling. These nanorings feature hoop-shaped segments of Gyroid (G-), Diamond (D-), and Primitive (P-) type carbon schwarzites. The conformations of the trimeric nanorings COTCNR1 and COTCNR2 are shape-persistent, whereas the tetrameric COTCNR3 possesses a flexible carbon skeleton which undergoes conformational changes upon forming host-guest complexes with fullerenes (C60 and C70), whose co-crystals may potentially serve as fullerene-based semiconducting supramolecular wires with electrical conductivities on the order of 10-7 S cm-1 (for C60⊂COTCNR3) and 10-8 S cm-1 (for C70⊂COTCNR3) under ambient conditions. This research not only describes highly efficient one-step syntheses of three cyclooctatetraene-embedded carbon nanorings which feature hoop-shaped segments of distinctive topological carbon schwarzites, but also demonstrates the potential application in electronics of the one-dimensional fullerene arrays secured by COTCNR3.

13.
Angew Chem Int Ed Engl ; : e202403123, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516796

RESUMO

The CRISPR-Cas12a system has emerged as a powerful tool for next-generation nucleic acid-based molecular diagnostics. However, it has long been believed to be effective only on DNA targets. Here, we investigate the intrinsic RNA-enabled trans-cleavage activity of AsCas12a and LbCas12a and discover that they can be directly activated by full-size RNA targets, although LbCas12a exhibits weaker trans-cleavage activity than AsCas12a on both single-stranded DNA and RNA substrates. Remarkably, we find that the RNA-activated Cas12a possesses higher specificity in recognizing mutated target sequences compared to DNA activation. Based on these findings, we develop the "Universal Nuclease for Identification of Virus Empowered by RNA-Sensing" (UNIVERSE) assay for nucleic acid testing. We incorporate a T7 transcription step into this assay, thereby eliminating the requirement for a protospacer adjacent motif (PAM) sequence in the target. Additionally, we successfully detect multiple PAM-less targets in HIV clinical samples that are undetectable by the conventional Cas12a assay based on double-stranded DNA activation, demonstrating unrestricted target selection with the UNIVERSE assay. We further validate the clinical utility of the UNIVERSE assay by testing both HIV RNA and HPV 16 DNA in clinical samples. We envision that the intrinsic RNA targeting capability may bring a paradigm shift in Cas12a-based nucleic acid detection and further enhance the understanding of CRISPR-Cas biochemistry.

14.
Asian J Surg ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38461140

RESUMO

Adhesive small bowel obstruction (ASBO) causes a major burden in emergency medicine. Owing to in situ decompression, nasointestinal tube (NIT) placement has been increasingly used in clinical practice compared with traditional conservation (TC); however, the indications remain controversial. This study was designed to explore the indications for each treatment in ASBOs and then suggest the optimal strategy. After propensity score matching, 128 pairs were included (the NIT and TC groups). The occurrence of severe adverse events (SAEs), peri-treatment clinical parameters, and radiological features were compared between the successful and failed treatment groups. According to different stages of the entire treatment, the independent risk factors for adverse effects for ASBO were analysed in phase I and phase II. In phase I, normal red blood cells (RBC) levels (p = 0.011) and a balanced sodium ion level (p = 0.016) positively affected the outcomes of TC treatment. In phase II, for the TC group, the successful treatment rate reached 79.5% for patients with ASBOs whose normal RBC levels (p = 0.006) or decreasing white blood cells (WBC) levels (p = 0.014) after treatment. For the NIT group, the treatment success rate was 68.1% for patients whose electrolyte imbalance could be reversed or whose neutrophil count/lymphocyte ratio (NLR) levels was lower than 4.3 (p = 0.018). TC treatment is highly recommended for patients with normal RBC counts and sodium levels pretreatment. After dynamic monitoring of the treatment process, for both the TC and NIT groups, once ASBOs had elevated inflammatory biomarkers or irreversible electrolyte disturbances, surgical interference was preferred.

15.
Chem Sci ; 15(12): 4564-4570, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516093

RESUMO

Axially chiral diaryl ethers bearing two potential axes find unique applications in bioactive molecules and catalysis. However, only very few catalytic methods have been developed to construct structurally diverse diaryl ethers. We herein describe an NHC-catalyzed atroposelective esterification of prochiral dialdehydes, leading to the construction of enantioenriched axially chiral diaryl ethers. Mechanistic studies indicate that the matched kinetic resolutions play an essential role in the challenging chiral induction of flexible dual-axial chirality by removing minor enantiomers via over-functionalization. This protocol features mild conditions, excellent enantioselectivity, broad substrate scope, and applicability to late-stage functionalization, and provides a modular platform for the synthesis of axially chiral diaryl ethers and their derivatives.

16.
Phys Rev Lett ; 132(10): 101901, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518307

RESUMO

We compute the total cross section and invariant mass distribution for heavy-quark pair production in e^{+}e^{-} annihilation at the next-to-next-to-next-to-leading order in QCD. The obtained results are expressed as piecewise functions defined by several deeply expanded power series, facilitating a rapid numerical evaluation. Utilizing top-pair production at a collision energy of 500 GeV as a benchmark, we observe a correction of approximately 0.1% for the total cross section and around 10% for the majority of the invariant mass distribution range. These results play a crucial role in significantly reducing theoretical uncertainty: the scale dependence has been diminished to 0.06% for the total cross section and to 5% for the invariant mass distribution. This reduction of uncertainty meets the stringent requirements of future lepton colliders.

17.
Adv Sci (Weinh) ; : e2309668, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537163

RESUMO

Tin-based perovskite solar cells (PSCs) are promising environmentally friendly alternatives to their lead-based counterparts, yet they currently suffer from much lower device performance. Due to variations in the chemical properties of lead (II) and tin (II) ions, similar treatments may yield distinct effects resulting from differences in underlying mechanisms. In this work, a surface treatment on tin-based perovskite is conducted with a commonly employed ligand, iso-butylammonium iodide (iso-BAI). Unlike the passivation effects previously observed in lead-based perovskites, such treatment leads to the recrystallization of the surface, driven by the higher solubility of tin-based perovskite in common solvents. By carefully designing the solvent composition, the perovskite surface is effectively modified while preserving the integrity of the bulk. The treatment led to enhanced surface crystallinity, reduced surface strain and defects, and improved charge transport. Consequently, the best-performing power conversion efficiency of FASnI3 PSCs increases from 11.8% to 14.2%. This work not only distinguishes the mechanism of surface treatments in tin-based perovskites from that of lead-based counterparts, but also underscores the critical role in designing tailor-made strategies for fabricating efficient tin-based PSCs.

18.
Cancer Res ; 84(6): 855-871, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486485

RESUMO

Immune checkpoint inhibitors (ICI) transformed the treatment landscape of hepatocellular carcinoma (HCC). Unfortunately, patients with attenuated MHC-I expression remain refractory to ICIs, and druggable targets for upregulating MHC-I are limited. Here, we found that genetic or pharmacologic inhibition of fatty acid synthase (FASN) increased MHC-I levels in HCC cells, promoting antigen presentation and stimulating antigen-specific CD8+ T-cell cytotoxicity. Mechanistically, FASN inhibition reduced palmitoylation of MHC-I that led to its lysosomal degradation. The palmitoyltransferase DHHC3 directly bound MHC-I and negatively regulated MHC-I protein levels. In an orthotopic HCC mouse model, Fasn deficiency enhanced MHC-I levels and promoted cancer cell killing by tumor-infiltrating CD8+ T cells. Moreover, the combination of two different FASN inhibitors, orlistat and TVB-2640, with anti-PD-L1 antibody robustly suppressed tumor growth in vivo. Multiplex IHC of human HCC samples and bioinformatic analysis of The Cancer Genome Atlas data further illustrated that lower expression of FASN was correlated with a higher percentage of cytotoxic CD8+ T cells. The identification of FASN as a negative regulator of MHC-I provides the rationale for combining FASN inhibitors and immunotherapy for treating HCC. SIGNIFICANCE: Inhibition of FASN increases MHC-I protein levels by suppressing its palmitoylation and lysosomal degradation, which stimulates immune activity against hepatocellular carcinoma and enhances the efficacy of immune checkpoint inhibition.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/genética , Linhagem Celular , Ácido Graxo Sintase Tipo I , Neoplasias Hepáticas/genética , Proteínas
19.
Discov Oncol ; 15(1): 92, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38555560

RESUMO

OBJECTIVE: AT-rich interaction domain 1A (ARID1A) mutant tumors show active anti-tumor immune response, which is the potential indication of immunotherapy. However, the relationship between the heterogeneous ARID1A expression and the immune response and immunotherapy efficacy in colorectal cancer (CRC) is still unclear. METHODS: We collected 1113 cases of patients with stage I-IV CRC who underwent primary resection at Harbin Medical University Cancer Hospital. ARID1A expression in CRC tissues was assessed via immunohistochemistry (IHC). CD8, CD163 and FOXP3 were stained by IHC to identify the immune landscape. Clinicopathological features of patients were compared using statistical tests like the Wilcoxon-Mann-Whitney test or χ2 tests. Kaplan-Meier survival analysis with log-rank tests were employed. RESULTS: Heterogeneous ARID1A expression was categorized into integrity expression, complete expression deficiency (cd-ARID1A), partial expression deficiency (pd-ARID1A), and clonal expression deficiency (cld-ARID1A). ARID1A-deficient expression was significant association with dMMR (P value < 0.001). Patients with ARID1A deficiency, compared to ARID1A-proficient patients, exhibited increased infiltration levels of CD8 + P value < 0.0001), CD163 + P value < 0.001), and FOXP3 + P value < 0.001).cells within the tumor tissue. However, in different subgroups, only samples with complete or partial deficiency of ARID1A showed a higher abundance of lymphocyte infiltration. In patients with ARID1A-clonal expression deficiency tumor, the infiltration patterns of three immune cell types were comparable to those in ARID1A-proficient patients. Heterogeneous ARID1A expression is related to the different prognosis and immunotherapythe efficacy in CRC patients. CONCLUSION: Heterogeneous ARID1A expression is accompanied by a different immune landscape. CRC patients with ARID1A-clonal expression deficiency do not benefit from the treatment of immune checkpoint inhibitors (ICIs).

20.
Chem Sci ; 15(5): 1638-1647, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303942

RESUMO

The overall photocatalytic CO2 reduction reaction presents an eco-friendly approach for generating high-value products, specifically ethanol. However, ethanol production still faces efficiency issues (typically formation rates <605 µmol g-1 h-1). One significant challenge arises from the difficulty of continuously transporting CO2 to the catalyst surface, leading to inadequate gas reactant concentration at reactive sites. Here, we develop a mesoporous superhydrophobic Cu2O hollow structure (O-CHS) for efficient gas transport. O-CHS is designed to float on an aqueous solution and act as a nano fence, effectively impeding water infiltration into its inner space and enabling CO2 accumulation within. As CO2 is consumed at reactive sites, O-CHS serves as a gas transport channel and diffuser, continuously and promptly conveying CO2 from the gas phase to the reactive sites. This ensures a stable high CO2 concentration at reactive sites. Consequently, O-CHS achieves the highest recorded ethanol formation rate (996.18 µmol g-1 h-1) to the best of our knowledge. This strategy combines surface engineering with geometric modulation, providing a promising pathway for multi-carbon production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...